A Multiclassifier Approach to Motor Unit Potential Classification for EMG Signal Decomposition
نویسنده
چکیده
EMG signal decomposition is the process of resolving a composite EMG signal into its constituent motor unit potential trains (classes) and it can be configured as a classification problem. An EMG signal detected by the tip of an inserted needle electrode is the superposition of the individual electrical contributions of the different motor units that are active, during a muscle contraction, and background interference. This thesis addresses the process of EMG signal decomposition by developing an interactive classification system, which uses multiple classifier fusion techniques in order to achieve improved classification performance. The developed system combines heterogeneous sets of base classifier ensembles of different kinds and employs either a one level classifier fusion scheme or a hybrid classifier fusion approach. The hybrid classifier fusion approach is applied as a two-stage combination process that uses a new aggregator module which consists of two combiners: the first at the abstract level of classifier fusion and the other at the measurement level of classifier fusion such that it uses both combiners in a complementary manner. Both combiners may be either data independent or the first combiner data independent and the second data dependent. For the purpose of experimentation, we used as first combiner the majority voting scheme, while we used as the second combiner one of the fixed combination rules behaving as a data independent combiner or the fuzzy integral with the λ-fuzzy measure as an implicit data dependent combiner. Once the set of motor unit potential trains are generated by the classifier fusion system, the firing pattern consistency statistics for each train are calculated to detect classification errors in an adaptive fashion. This firing pattern analysis allows the algorithm to modify the threshold of assertion required for assignment of a motor unit potential classification individually for each train based on an expectation of erroneous assignments. The classifier ensembles consist of a set of different versions of the Certainty classifier, a set of classifiers based on the nearest neighbour decision rule: the fuzzy k-NN and the
منابع مشابه
Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملInnovative Methodology Decomposition of indwelling EMG signals
Nawab SH, Wotiz RP, De Luca CJ. Decomposition of indwelling EMG signals. J Appl Physiol 105: 700–710, 2008. First published May 15, 2008; doi:10.1152/japplphysiol.00170.2007.—Decomposition of indwelling electromyographic (EMG) signals is challenging in view of the complex and often unpredictable behaviors and interactions of the action potential trains of different motor units that constitute t...
متن کاملCan Wavelet Denoising Improve Motor Unit Potential Template Estimation?
Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...
متن کاملA Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders
Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...
متن کاملComparative Study of Different EMG Signal decomposition Techniques
EMG signals are electromyogram signals generated by firing of MUs (motor units) in muscle fibers. The decomposition of EMG signal of a muscle provides useful information for the diagnosis of neuro-muscular diseases by physician and neurologist. In decomposition of EMG signal different MUAPs (Motor Unit Action Potentials) are classified into different categories. This paper gives a review of dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006